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Abstract

Reinforcement learning is a branch of machine learning that enables machines to learn

by trial and error. It is an experience-driven sequential learning process to achieve a

particular goal. Recent advances in reinforcement learning have combined deep learning,

which has led to the emergence of a new field called deep reinforcement learning (DRL).

DRL algorithms have shown great success on various complex decision-making tasks that

were earlier thought to be extremely difficult for a computer. Communication networks

play a fundamental role in today’s information age, where connectivity has become a

basic commodity of life. They will play an even more critical role in the future, when

everything from people, animals, wearable devices and cars to buildings and industries,

will be connected. Providing connectivity on such a massive scale calls for an advanced

set of solutions that can deal with complex, large-scale, and dynamic wireless and wired

networks. DRL has the potential to meet these challenges due to its ability to learn

from experience and adapt to the changing complex decision-making environment. Thus,

we use DRL as a primary tool in this thesis and investigate one wireless and one wired

technology.

Spectrum scarcity is one of the major issues for wireless communications, due to the

limited availability of spectrum bands. A cognitive radio network (CRN) is one of the

potential technologies that can overcome spectrum scarcity by efficiently utilising idle

spectrum. In a CRN, cognitive users dynamically utilise idle spectrum with the require-

ment of no harmful interference to the licensed spectrum users. The first part of this thesis

investigates CRN from the viewpoint of enhancing the process of dynamic spectrum ac-

cess, and identifies three research objectives. First, a non-cooperative distributed CRN

is considered where the goal is to achieve fairness of spectrum resources while avoiding

collision. This is a highly challenging research problem due to the non-cooperating net-

work users and non-stationary environment. A multi-agent DRL solution is proposed that

significantly improves the network performance in terms of fairness of spectrum resources



and collision avoidance among all users of the network. Second, the task of local and

cooperative spectrum sensing in a centralised CRN is investigated. For licensed users,

time-inhomogeneous discrete and continuous activity models are considered. An offline

DRL solution is proposed that significantly improves the detection of licensed spectrum

users and idle spectrum utilisation. Third, prediction-based spectrum sensing in a cen-

tralised CRN is investigated. A k-step prediction framework with an offline DRL solution

is proposed for both local and cooperative spectrum sensing. The proposed solution sig-

nificantly improves the energy efficiency and transmission time of cognitive users.

For wired communications, a software-defined network (SDN) is a logically centralised

network that provides various benefits over traditional distributed networks, such as on-

demand resource allocation and easy reconfiguration. In an SDN, quality of service (QoS)

routing is basic functionality that determines the path between a source and destination

which fulfils the QoS requirements. It plays a vital role in various crucial network services,

such as substation communication in a smart grid. The second part of this thesis investi-

gates QoS routing in an SDN. Existing DRL solutions formulate routing as a continuous

control problem using k-shortest paths, whereas we propose a discrete control QoS routing

framework called deep Q-routing that does not use predefined k-shortest paths. Instead,

the proposed framework learns the network topology and optimises QoS parameters while

avoiding network loops and invalid actions. The effectiveness of the proposed framework

is shown for both soft and hard QoS routing.


